Expression of genes involved in anthocyanin biosynthesis in relation to anthocyanin, proanthocyanidin, and flavonol levels during bilberry fruit development.
نویسندگان
چکیده
The production of anthocyanins in fruit tissues is highly controlled at the developmental level. We have studied the expression of flavonoid biosynthesis genes during the development of bilberry (Vaccinium myrtillus) fruit in relation to the accumulation of anthocyanins, proanthocyanidins, and flavonols in wild berries and in color mutants of bilberry. The cDNA fragments of five genes from the flavonoid pathway, phenylalanine ammonia-lyase, chalcone synthase, flavanone 3-hydroxylase, dihydroflavonol 4-reductase, and anthocyanidin synthase, were isolated from bilberry using the polymerase chain reaction technique, sequenced, and labeled with a digoxigenin-dUTP label. These homologous probes were used for determining the expression of the flavonoid pathway genes in bilberries. The contents of anthocyanins, proanthocyanidins, and flavonols in ripening bilberries were analyzed with high-performance liquid chromatography-diode array detector and were identified using a mass spectrometry interface. Our results demonstrate a correlation between anthocyanin accumulation and expression of the flavonoid pathway genes during the ripening of berries. At the early stages of berry development, procyanidins and quercetin were the major flavonoids, but the levels decreased dramatically during the progress of ripening. During the later stages of ripening, the content of anthocyanins increased strongly and they were the major flavonoids in the ripe berry. The expression of flavonoid pathway genes in the color mutants of bilberry was reduced. A connection between flavonol and anthocyanin synthesis in bilberry was detected in this study and also in previous data collected from flavonol and anthocyanin analyses from other fruits. In accordance with this, models for the connection between flavonol and anthocyanin syntheses in fruit tissues are presented.
منابع مشابه
Flavonoid Biosynthesis in Bilberry (vaccinium Myrtillus L.)
Flavonoids are a class of secondary metabolites in plants that are involved in many important functions. Various flavonoid compounds have also been reported to be beneficial for human health. Bilberry (Vaccinium myrtillus L.) is the characteristic field layer species in boreal forests and the fruits of bilberry are rich in anthocyanin pigments, a subclass of flavonoids. In the present work, fla...
متن کاملA SQUAMOSA MADS box gene involved in the regulation of anthocyanin accumulation in bilberry fruits.
Anthocyanins are important health-promoting phytochemicals that are abundant in many fleshy fruits. Bilberry (Vaccinium myrtillus) is one of the best sources of these compounds. Here, we report on the expression pattern and functional analysis of a SQUAMOSA-class MADS box transcription factor, VmTDR4, associated with anthocyanin biosynthesis in bilberry. Levels of VmTDR4 expression were spatial...
متن کاملGenome-wide Expression Analysis and Metabolite Profiling Elucidate Transcriptional Regulation of Flavonoid Biosynthesis and Modulation under Abiotic Stresses in Banana
Flavonoid biosynthesis is largely regulated at the transcriptional level due to the modulated expression of genes related to the phenylpropanoid pathway in plants. Although accumulation of different flavonoids has been reported in banana, a staple fruit crop, no detailed information is available on regulation of the biosynthesis in this important plant. We carried out genome-wide analysis of ba...
متن کاملThe Flavonoid Pathway Regulates the Petal Colors of Cotton Flower
Although biochemists and geneticists have studied the cotton flower for more than one century, little is known about the molecular mechanisms underlying the dramatic color change that occurs during its short developmental life following blooming. Through the analysis of world cotton germplasms, we found that all of the flowers underwent color changes post-anthesis, but there is a diverse array ...
متن کاملTranscriptome profiling reveals differential gene expression in proanthocyanidin biosynthesis associated with red/green skin color mutant of pear (Pyrus communis L.)
Anthocyanin concentration is the key determinant for red skin color in pear fruit. However, the molecular basis for development of red skin is complicated and has not been well-understood thus far. "Starkrimson" (Pyrus communis L.), an introduced red pear cultivated in the north of China and its green mutant provides a desirable red/green pair for identification of candidate genes involved in c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Plant physiology
دوره 130 2 شماره
صفحات -
تاریخ انتشار 2002